首頁 > 新聞 > 社會 >
人工智慧可望加速藥物開發
2022-07-22 13:21 作者:記者王輝丹/臺北報導 來源:台灣新生報 VIEW:
童俊維指出,人工智慧方法學自傳統的機制為基礎如蛋白質小分子嵌合實驗,一路演進至資料驅動的模式,從過去實驗資料中採用機器學習與深度學習分析模式獲取知識,並用以預測未知化合物的特性;而最常採用的方法為監督式學習(supervised learning),即藉由分析大量標註(進行實驗取得的標註資料)與化合物結構間的關聯就能有效預測新化合物結構的生物活性。然而,監督式學習仰賴大量標註資料在藥物開發領域幾乎難以取得,特別是相較於複雜度動輒超過十的十次方以上的化學空間。目前監督式學習方法學習到的僅僅是化學空間中的一個小角落,也因此對於差異較大的化合物結構的預測效果往往有限。
借鏡於影像與自然語言處理領域的成功經驗,近期有許多研究專注於探討不須標註資料的非監督式學習中的自監督學習,透過學習資料本身的結構或特性,建立預訓練模型,接著利用潛在空間(latent space)進行監督式學習或是生成式學習。舉例來說,NVIDIA發表的MegaMolBART就是透過學習五億個分子結構的特性建構預訓練模型,其產生的潛在空間就能用來進行少量資料的監督式學習,甚至生成式藥物設計。其他像是自編碼器或對抗生成網路(generative adversarial network)等相關衍生的演算法在近年也有許多進展。
- 責編:新生大陸事業部
- 五大洲佛青 研討智慧創新弘法 2022-07-18
- 智慧醫材發展於資安規畫分享會 線上舉行 2022-06-23
- 廢校成立屏東智慧農業學校 領航培育農用植保人才 2022-03-09
- 臺鐵局將建置智慧鐵道IoT平台 2020-09-17
- 南臺啟動智慧交通邁入新篇章 2020-08-10
- 雲科大智慧型機器人菁英人才訓練基地揭牌 2020-07-30